If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16x^2-24x-20=0
a = 16; b = -24; c = -20;
Δ = b2-4ac
Δ = -242-4·16·(-20)
Δ = 1856
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1856}=\sqrt{64*29}=\sqrt{64}*\sqrt{29}=8\sqrt{29}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-8\sqrt{29}}{2*16}=\frac{24-8\sqrt{29}}{32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+8\sqrt{29}}{2*16}=\frac{24+8\sqrt{29}}{32} $
| -5(4x+2)-3x+2=-144 | | -4=n-3-7 | | ((2x)^3-3x^2+5x-1)/(x+2)=0 | | 0.1(x+30)+0.9(x-70)=10 | | (6/7)+(1/3)x=3 | | 3x/4+x/8=7 | | 4(x+3)=33 | | 4.6+1.2n=1.60 | | M·10-m·2=8 | | -4d-6=-12 | | -1/8(2h+4)+1/2=7/4 | | x+x+6=14-4x | | -9x-9+7x+2=x-16 | | -k/5=7/6 | | 30=-6/7y | | 8-12|k+5|=-4 | | -8+x=-16 | | -16t^2+64t+80=80 | | 3(4y+9)=39 | | b-4/6=12 | | 4(2x-3)+3=39 | | 5-4x+9x=8+10x+7 | | 4(3y+7)=40 | | 5+8m=(-11) | | 14-c=-9 | | 3x/4-25/9=7/4 | | 3x+7/2=-2.5 | | 4d2(5−d)=2−4d | | 2x=-1x+-2 | | -82=-n+2(5n-5) | | 125m-75m+42,975=45,675-175m | | -3x+2=2x-7 |